
INTRODUCTION TO

EMBEDDED SYSTEMS

What is an Embedded

system?

 An embedded system is one that has computer hardware
with software embedded in it as one of its components.

Or

 We can define an embedded system as “A
microprocessor based system that does not look like
a computer”.

Or

 we can say that it is “A combination of computer
hardware and software, and perhaps additional
mechanical or other parts, designed to perform a
dedicated function. In some cases, embedded
systems are part of a larger system or product, as is
the case of an antilock braking system in a car ”.

 An embedded system is a special-purpose computer

system designed to perform certain dedicated functions.

It is usually embedded as part of a complete device

including hardware and mechanical parts. (Wikipedia)

Significance

Due to their compact size, low cost and simple design

aspects made embedded systems very popular and

encroached into human lives and have become

indispensable. They are found everywhere from kitchen ware

to space craft. To emphasize this idea here are some

illustrations.

Embedded systems everywhere?

Embedded systems span all aspects of modern life and there are many

examples of their use.

a) Biomedical Instrumentation – ECG Recorder, Blood cell recorder,

patient monitor system

b) Communication systems – pagers, cellular phones, cable TV

terminals, fax and transreceivers, video games and so on.

c) Peripheral controllers of a computer – Keyboard controller, DRAM

controller, DMA controller, Printer controller, LAN controller, disk

drive controller.

d) Industrial Instrumentation – Process controller, DC

motor controller, robotic systems, CNC machine

controller, close loop engine controller, industrial

moisture recorder cum controller.

e) Scientific – digital storage system, CRT display

controller, spectrum analyser.

Were the embedded systems

existing earlier ?

Yes, We have been enjoying the grace of embedded system
quite a long time. But they were not so popular because
in those days most of the embedded systems were
designed around a microprocessor unlike today’s
systems which were built around a microcontroller.

As we know a microprocessor by itself do not possess any
memory, ports etc. So everything must be connected
externally by using peripherals like 8255, 8257, 8259 etc.
So the embedded system designed using microprocessor
was not only complicated in design but also large in size.
At the same time the speed of microprocessor is also a
limitation for high end applications.

Why a microcontroller ?

A microcontroller is a single silicon chip with memory and

all Input/Output peripherals on it. Hence a

microcontroller is also popularly known as a single chip

computer. Normally, a single microcomputer has the

following features :

➢ Arithmetic and logic unit

➢ Memory for storing program

➢ EEPROM for nonvolatile data storage

➢ RAM for storing variables and special function registers

➢ Input/output ports

➢ Timers and counters

➢ Analog to digital converter

➢ Circuits for reset, power up, serial programming,

debugging

➢ Instruction decoder and a timing and control unit

➢ Serial communication port

So, its no wonder to say that the microcontroller is the

most sought after device for designing an efficient

embedded system.

What is inside an embedded

system ?

Every embedded system consists of custom-built

hardware built around a Central Processing Unit (CPU).

This hardware also contains memory chips onto which

the software is loaded. The software residing on the

memory chip is also called the ‘firmware’.

The operating system runs above the hardware, and the

application software runs above the operating system.

The same architecture is applicable to any computer

including a desktop computer. However, there are

significant differences. It is not compulsory to have an

operating system in every embedded system.

For small appliances such as remote control units, air-

conditioners, toys etc., there is no need fir an operating

system and we can write only the software specific to that

application. For applications involving complex

processing, it is advisable to have an operating system.

In such a case, you need to integrate the application

software with the operating system and then transfer the

entire software on to the memory chip. Once the

software is transferred to the memory chip, the software

will continue to run for a long time and you don’t need to

reload new software .

The next slide shows the layered architecture of an

embedded system.

Layered architecture of an Embedded System

Now let us see the details of the various building blocks of

the hardware of an embedded system.

 Central Processing Unit (CPU)

 Memory (Read only memory and Random access

memory)

 Input Devices

 Output Devices

 Communication interfaces

 Application specific circuitry

This slide shows the Hardware architecture of an

embedded system

Features of an embedded

system

Embedded systems do a very specific task, they cannot be
programmed to do different things.

 Embedded systems have very limited resources,
particularly the memory. Generally, they do not have
secondary storage devices such as the CDROM or the
floppy disk.

 Embedded systems have to work against some
deadlines. A specific job has to be completed within a
specific time. In some embedded systems, called real-
time systems, the deadlines are stringent. Missing a
dead line may cause a catastrophe – loss of life or
damage to property.

 Embedded systems are constrained for power, As many
embedded systems operate through a battery, the power
consumption has to be very low.

 Embedded systems need to be highly reliable. Once in a
while, pressing ALT-CTRL-DEL is OK on your desktop,
but you cannot afford to reset your embedded system.

 Some embedded systems have to operate in extreme
environmental conditions such as very high temperatures
and humidity.

 Embedded systems that address the consumer market
(for example electronic toys) are very cost-effective.
Even a reduction of Rs.10 is lot of cost saving, because
thousands or millions systems may be sold.

 Unlike desktop computers in which the hardware platform
is dominated by Intel and the operating system is
dominated by Microsoft, there is a wide variety of
processors and operating systems for the embedded
systems. So, choosing the right platform is the most
complex task .

Classification of Embedded

Systems

Based on functionality and performance

requirements, embedded systems are

classified as :

 Stand-alone Embedded Systems

Real-time Embedded Systems

Networked Information Appliances

Mobile Devices

Stand-alone Embedded Systems

As the name implies, stand-alone systems work in
stand-alone mode. They take inputs, process them
and produce the desired output. The input can be
electrical signals from transducers or commands
from a human being such as the pressing of a button.
The output can be electrical signals to drive another
system, an LED display or LCD display for displaying
of information to the users. Embedded systems used
in process control, automobiles, consumer electronic
items etc. fall into this category.

Real-time Systems

Embedded systems in which some specific work has to

be done in a specific time period are called real-time

systems. For example, consider a system that has to

open a valve within 30 milliseconds when the humidity

crosses a particular threshold. If the valve is not opened

within 30 milliseconds, a catastrophe may occur. Such

systems with strict deadlines are called hard real-time

systems.

In some embedded systems, deadlines are imposed, but

not adhering to them once in a while may not lead to a

catastrophe. For example, consider a DVD player.

Suppose, you give a command to the DVD player from a

remote control, and there is a delay of a few milliseconds

in executing that command. But, this delay won’t lead to

a serious implication. Such systems are called soft real-

time systems .

Hard Real-Time Embedded System

Networked Information Appliances

Embedded systems that are provided with network
interfaces and accessed by networks such as Local Area
Network or the Internet are called networked information
appliances. Such embedded systems are connected to a
network, typically a network running TCP/IP
(Transmission Control Protocol/Internet Protocol) protocol
suite, such as the Internet or a company’s Intranet.

These systems have emerged in recent years. These
systems run the protocol TCP/IP stack and get connected
through PPP or Ethernet to an network and communicate
with other nodes in the network.

Here are some examples of such systems

 A networked process control system consists of a number
of embedded systems connected as a local area network.
Each embedded system can send real-time data to a
central location from where the entire process control
system can be monitored. The monitoring can be done
using a web browser such as the Internet Explorer.

 A web camera can be connected to the Internet. The
web camera can send pictures in real-time to any
computer connected to the Internet. In such a case, the
web camera has to run the HTTP server software in
addition to the TCP/IP protocol stack.

➢ The door lock of your home can be a small embedded

system with TCP/IP and HTTP server software running

on it. When your children stand in front of the door lock

after they return from school, the web camera in the door-

lock will send an alert to your desktop over the Internet

and then you can open the door-lock through a click of

the mouse.

This slide shows a weather monitoring system connected to the

Internet. TCP/IP protocol suite and HTTP web server software

will be running on this system. Any computer connected to the

Internet can access this system to obtain real-time weather

information.

The networked information appliances need to run the

complete TCP/IP protocol stack including the application

layer protocols. If the appliance has to provide

information over the Internet, HTTP web server software

also needs to run on the system.

Mobile Devices

Mobile devices such as mobile phones, Personal Digital

Assistants (PDAs), smart phones etc. are a special

category of embedded systems. Though the PDAs do

many general purpose tasks, they need to be designed

just like the ‘conventional’ embedded systems.

The limitations of the mobile devices – memory constraints,

small size, lack of good user interfaces such as full

fledged keyboard and display etc. are same as those

found in the embedded systems discussed above.

Hence, mobile devices are considered as embedded

systems.

However, the PDAs are now capable of supporting general

purpose application software such as word processors,

games, etc.

Languages for Programming

Embedded Systems

Assembly language was the pioneer for programming

embedded systems till recently. Nowadays there are

many more languages to program these systems. Some

of the languages are C, C++, Ada, Forth, and Java

together with its new enhancement J2ME.

The presence of tools to model the software in UML, SDL is

sufficient to indicate the maturity of embedded software

programming

The majority of software for embedded systems is still done

in C language. Recent survey indicates that

approximately 45% of the embedded software is still

being done in C language.

C++ is also increasing its presence in embedded systems.

As C++ is based on C language, thus providing

programmer the object oriented methodologies to reap

the benefits of such an approach.

C is very close to assembly programming and it allows very

easy access to underlying hardware. A huge number of

high quality compilers and debugging tools are available

for the C language.

Though C++ is theoretically more efficient than C, but some

of its compilers have bugs due to the huge size of the

language. These compilers may cause a buggy

execution.

C language can definitely claim to have more mature

compilers C++. Now in order to avail the extra benefits of

C++ and plus to avoid buggy execution, experts are

doing efforts to identify a subset of C++ that can be used

in embedded systems and this subset is called

Embedded C++ .

Communication Interfaces

For embedded systems to interact with the external world, a
number of communication interfaces are available. They
are

 Serial Communication Interfaces (SCI):

RS-232, RS-422, RS-485 etc

 Synchronous Serial Communication Interface:

I2C, JTAG, SPI, SSC and ESSI

 Universal Serial Bus (USB)

http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/RS-422
http://en.wikipedia.org/wiki/RS-485
http://en.wikipedia.org/wiki/I2C
http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Universal_Serial_Bus

 Networks:

Ethernet, Controller Area Network, LonWorks, etc

 Timers:

PLL(s), Capture/Compare and Time Processing Units

 Discrete IO:

General Purpose Input/Output (GPIO)

 Analog to Digital/Digital to Analog (ADC/DAC)

http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Controller_Area_Network
http://en.wikipedia.org/wiki/LonWorks
http://en.wikipedia.org/wiki/PLL
http://en.wikipedia.org/wiki/Time_Processing_Unit
http://en.wikipedia.org/wiki/General_Purpose_Input/Output

Which is the best suited

microcontroller for design of

embedded system?

There is always a trade off between efficiency and power

dissipation. To know this, let us review the various types

of microcontrollers and their specifications and the

vendors.

From the previous slide we can find that

the ARM processor is a strong option for

better performance. But when we

consider the power consumption, in the

case of ARM it is around 400mW and the

ATmega1031, AVR microcontroller

consumes low power around 16.5mW,

but provides low performance.

But the Texas instruments MSP430 with

wide range of operation modes

consumes only 1.2mW with reasonably

good performance. So it is always left to

the designer to choose a suitable device

according to the requirement.

Design of an embedded system – a

Case study

To understand the design of a simple

embedded system let us first consider

the idea of a data acquisition system.

The data acquisition system is shown in

the next slide.

Data acquisition system

For example let me consider a simple case

of temperature measurement embedded

system.

❖ First we must select a temperature

sensor like thermistor or AD590 or LM35

or LM335 or LM75 etc.

❖ After this the analog data is converted

into digital data and at the same time

proper signal conditioning is done.

❖ This digital input is fed to the

microcontroller through its ports.

❖ By developing a suitable program

(Embedded C or Assembly) the data is

processed and controlled.

❖ For this purpose keil or Ride or IAR ARM

Embedded workbench C compilers can

be used.

❖Once the program is debugged, and

found error free it can be dumped into

the microcontroller flash memory using

ISP (Philips - Flash magic or any ISP).

❖Now, your microcontroller chip acts as

an embedded chip.

For the sake of clarity I present the block diagram of a

simple embedded system.

Embedded C softwares

Keil μvision evaluation version can be

downloaded from www.keil.com

Embedded C compiler Ride can be downloaded freely

from www.raisonance. com

Embedded IAR ARM Workbench can be downloaded from

www.iar.com

http://www.keil.com/
http://www.raisonance/

The various vendors who can supply the

microcontroller kits :

1.Power systems, Chennai (www.powersoftsystems .com)

2.Vi-microsystems - Chennai(www.vimicrosystems.com)

3.ESA systems- Bangalore(www.esa india.com)

4.SPJ Embedded Technologies .Ltd. (www.spjsystems.com)

5.Advanced Electronic systems-Bangalore (www. alsindia.net)

6. Front line electronics . www. frontline-electronics. com

http://www.esa/
http://www.spjsystems.com/

Books that have helped me to understand

the embedded systems :

1) Barr, Michael, Programming embedded

sytems in C and C++ - OReilly Publ.

2) Raj Kamal, Embedded systems, TMG

3) Valvano, Introduction to Embedded

microcomputer systems, Thomson Publ.

4) Mazidi and Mazidi, The 8051 microcontroller

and embedded sytems - Pearson education.

5) Peatman,J.B. Design with microcontrollers

and microcomputers, McGraw Hill

6) Sewart. J.W. The 8051 Microcontroller

Hardware, Software and Interfacing – Prentice

Hall

7) Ayala Kenneth, The 8051 Microntroller –

Architecture, Programming and Applications –

Delmar Publ.

8) Ajay Deshmukh, Microcontrollers – TATA

McGraw Hill

9) Rajkamal, Microcontrollers - Architecture,

Programming – Pearson Publ.

10) Myke Predko, Programming the 8051

Microcontroller – McGraw Hill

11) Michael J. Pont, Embedded C - Addison

Wesely Publ.

12) Steve Heath, Embedded system design –

Heinemann Publ.

13) Frank Vahid, Embedded systems – a unified

hardware/software Introduction – John Wiley

and sons Publ.

14) Barnett Cox & O’cull, “Embedded C

Programming & the Microchip PIC”,

Thomson Delmar Learning.

Website References

1. http://www.eg3.com

2. http://www.ARM.MCU.com

3. http://www.mcjournal.com

4. http://www.iar.com

5. http://www.keil.com

6. http://www.semiconductors.philips.com/microc

ontrollers

7. http://www.embedded.com

8. http://www.powersoftsystems.com

http://www.eg3.com/
http://www.arm.mcu.com/
http://www.mcjournal.com/
http://www.iar.com/
http://www.keil.com/
http://www.semiconductors.philips.com/microcontrollers
http://www.embedded.com/

 www.macrovision.com/newsletters

 www.planarembedded.com

 www.8051.org

 www.8051projects.net

 www.programmersheaven.com

 microcontrollershop.com

Concluding remarks

 There’s lots more to learn, but with these

basics under your belt it’s just a small

matter of gaining experience

Good luck!

